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ABSTRACT 

EPILEPTOGENESIS CAUSES LONG-TERM PLASTICITY CHANGES IN 
CALBINDIN D-28K IN THE RAT PILOCARPINE MODEL OF ACQUIRED 

EPILEPSY 

Anne Johnston Harrison 

A Thesis submitted in partial fulfillment of the requirement of the degree of Master of 
Science at Virginia Commonwealth University 

Virginia Commonwealth University, 2005 

Director: Robert J. DeLorenzo, M.D., Ph.D., M.P.H. 
Professor 
Department of Neurology and Pharmacology/Toxicology 

Epilepsy is one of the most common neurological disorders, affecting more than 

2% of children and 1% of adults in the U.S. Emerging research has demonstrated that 

calcium, as a major second messenger system, underlies many of these injury-induced 

plasticity changes associated with the development of epilepsy. Recent evidence has 

suggested that long term elevations in neuronal resting calcium levels play a role in 
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initiating and maintaining epileptogenesis (the development of epilepsy). Collaborations 

between our lab and others have produced microarray data .that suggests that a major 

calcium-binding protein, calbindin D-28k, rnRNA levels are decreased in epileptic rats 

even up to one year following pilocarpine treatment. The goal of this research effort was 

to determine if epileptogenesis alters basal calcium levels by producing a long-term 

change in the expression of the major calcium binding protein in neurons, calbindin D- 

28k. Immunohistochemistry (MC) and western blot experiments have been conducted to 

test the hypothesis that epileptogenesis produces a long lasting decrease in the expression 

of calbindin in the hippocampus in the rat pilocarpine model of acquired epilepsy. MC 

experiments indicated that changes in calbindin expression occur gradually over a 2-4 

week interval after the initial injury. Significant decreases in calbindin irnmunoreactivity 

are seen in the hippocampus of epileptic animals, at one month, four months, and six 

months post-pilocarpine treatment. However, these changes were not seen as early as 4 

days post-status epilepticus. Western blots quantitated differences between epileptic 

animals and naive controls. Long lasting decreases in calbindin may play an important 

role in the altered calcium hon~eostatic mechanisms observed in epileptic neurons. These 

findings will help to elucidate one of many changes that occurs in epilepsy. 
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INTRODUCTION 

Epilepsy 

Epilepsy is a neurological disorder characterized by recurrent, unprovoked 

seizures. A seizure is defined as the synchronous discharge and uncontrollable firing of a 

population of neurons (Lothman et al., 1991). Seizure discharges have a distinct onset 

and termination. The occurrence of seizure activity does not necessarily indicate a 

permanent alteration in neuronal function. An isolated episode can be precipitated by a 

variety of insults to the brain, including trauma, toxins, drug withdrawal, and metabolic 

disturbances. Status epilepticus (SE) is defined as continuous seizure activity that lasts 

for 30 minutes or longer, or intermittent seizures without regaining consciousness 

between seizures lasting 30 minutes or longer. It can damage brain tissue and lead to the 

generation of spontaneous recurrent seizures (SRSs). 

Epilepsy can vary in age of onset, cause, seizure type, and pattern of the 

electroencephalogram (DeLorenzo, 1989, 199 1). This diversity of expression has led to 

the standard classification of epilepsy and the numerous different epilepsy syndromes 

(Frazen, 2000). A classification system has been developed that incorporates data from 

animal models and clinical evaluations (Lothrnan et al., 199 1). Partial seizures involve 

specific brain foci and exhibit a variety of behavioral and motor characteristics. This 
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class of seizures is subdivided into simple and complex, the latter involving loss of 

consciousness. Partial seizures have the ability to propagate througho~~t the brain and 

become generalized. Generalized seizures involve large areas of the brain and are 

bilateral in nature. Although epilepsy can manifest itself in a number of different ways, 

each type of epilepsy shares the common feature of persistently increased neuronal 

excitability that manifests sporadically as seizure generation (Lothman et al., 1991; 

McNamara, 1994, 1999). Behavioral manifestations that ensue with generalized seizures 

range from loss of consciousness to major motor convulsions (tonic, clonic, or tonic- 

clonic). It has been estimated that approximately 10% of the population will experience a 

seizure at some time during their lifetime (Lothman et al., 1991). 

Epilepsy impacts society on many different levels. From the economic 

standpoint, the total annual cost of epilepsy is estimated at nearly four billion dollars in 

direct medical expenses combined with indirect expenses such as lost wages, cost of 

home care, and premature death (Murray et al., 1996). Although advances have been 

made in the development of anticonvulsant drugs and the surgical treatment of epilepsy, 

approximately 50% of epilepsy cases remain refractory to medical interventions. This 

condition greatly burdens the quality of life of 1-2 million Americans (Hauser, 1990). 

In daily life, epileptics must deal with disease treatment issues and can suffer from 

limitations in mental and physical function which may affect the employment status of 

both the individual and family caregivers, as well as interpersonal relationships at home, 

work, and school (DeLorenzo et al., 1996; Crarner et al., 1999; Buelow, 2001). Thus, the 
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stigma associated with epilepsy as well as functional disabilities of the disease can 

greatly diminish the quality of life of persons with epilepsy. 

Unlike a single seizure, epilepsy is associated with spontaneous recurrent seizures 

(SRS) and is the result of a long-lasting alteration in neuronal function at the molecular 

level. In roughly 50% of cases there is no known cause for the disorder (Hauser, 1983; 

DeLorenzo, 1991). These epilepsies are called idiopathic, in that they occur in the 

absence of other brain abnormalities (Frazen, 2000.) Ongoing research in the field of 

medical genetics has led to the elucidation of an underlying cause for some of these 

idiopathic cases with the identification of cell migration abnormalities (Copp and 

Harding, 1999; Rakic, 2000) and numerous gene mutations in humans (Bertrand et al., 

1998; Wallace et al., 1998) and mouse models of epilepsy (Puranam and McNamara, 

1999 that may underlie some of these idiopathic epilepsies. However, in the majority of 

idiopathic cases, the underlying cause of the epileptic phenotype is still unknown. 

In the remaining estimated 50% of cases, a known cause or injury produces 

permanent plasticity changes that lead to the development of acquired epilepsy (AE) 

(Hauser, 1983; Lothman et al., 1991 ; McNanlara, 1999). The transformation of healthy 

CNS tissue with a normal balance between excitation and inhibition to a brain with 

hyperexcitable populations of neurons is called epileptogenesis. It involves a permanent 

plasticity change from a known cause or injury that leads to the development of AE 

(Lothman et al., 1991; McNamara, 1999). 
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Molecular mechanisms of epilepsy 

Epileptogenesis has been attributed to alterations in both excitatory and inhibitory 

synaptic function. Changes in these two systems, either independently or in concert with 

each other, play an important role in seizure induction. At the functional level, the 

multitude of underlying regulatory pathways involved in sustaining the epileptogenic 

phenotype is very complex. Many investigations employing both in vitro and in vivo 

models of epilepsy have shed light on some of these underlying mechanisms. 

In many seizure models, a significant and well-documented phenomenon is the 

observation of selective cell loss in the hippocampus, accompanied by sprouting of 

mossy fibers onto targets that did not receive those inputs previously (Parent et al., 1997). 

This is also seen in brain tissue taken from temporal lobe epilepsy (TLE) patients (Sutula, 

1990). The re-wiring of neuronal circuitry has been shown to predominantly occur in the 

hilar cells of the dentate gyrus (DG), a region usually resistant to seizure induction 

(Parent et al., 1997). 

As part of the hippocampal formation, the dentate gyrus participates in the 

processes of learning, memory, motivation, integration of cognitive functions, alerting 

responses (Block, 1993). Via the entorhinal cortex, the dentate gyrus integrates inputs 

from a variety of cortical regions (Amaral and Witter, 1995). The loss of inhibition in the 

dentate gyrus may cause hyperexcitability of the CA3 and CA1 subregions; and this 

changed excitability state in the whole hippocampal formation could be one of the 

underlying mechanisms in the generation of spontaneous recurrent seizures. This 
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neurogenesis and aberrant synaptic reorganization leads to an increased number of 

excitatory synapses, culminating in the induction of a hyperexcitable state. The 

potentiation of neuronal excitability is thought to contribute to the pathophysiological 

manifestations evident in these models (Parent et al., 1997). 

Glutamate and glutamate receptors 

L-Glutamate is the most widespread amino acid in the brain and serves a number 

of functions in the CNS (Nicholls and Attwell, 1990). For instance, this dicarboxylic 

amino acid is a precursor to the inhibitory amino acid neurotransmitter y-aminobutyric 

acid (GABA), for the Krebs cycle intermediate a-ketoglutarate, and for the amino acid 

glutamine. Glutamate also functions as a detoxification agent for ammonia products in 

the brain. In addition to the many metabolic roles of glutamate, the most significant 

function of glutamate in the brain is its function as the primary excitatory 

neurotransmitter (Mayer and Westbrook, 1987). 

As a neurotransmitter, extracellular glutamate levels must be maintained at 

controlled levels. Under physiological conditions, extracellular glutamate has been 

measured in the range of 1-5 pM (Wahl et al., 1994). Although transporters exist to 

move glutamate into the brain across the blood-brain-barrier, the majority of glutamate is 

synthesized de novo from either glucose, glutamine, or aspartate (Lattera et al., 1999). 

Glutamate is stored in synaptic vesicles at concentrations in excess of 20 n?M via a 

magnesium (M~~+)/ATP dependent transporter (Dingledine et al., 1999). The primary 
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mechanism for uptake of extracellular glutamate is a class of high affinity ~ a +  dependent 

glutamate transporters found on neurons and astrocytes (Gegelashvili and Schousboe, 

1997). 

The signaling actions of glutamate are mediated at the neuronal membrane 

through specialized receptor macromolecules. The binding of glutamate to specific sites 

on its receptor molecule causes a conforniational change that initiates signal transduction 

cascades in the neuron. Glutamate receptors are broadly categorized based on the 

signaling cascade they trigger. Ionotropic glutamate receptors are coupled to ion 

permeable channels which, under physiological conditions, depolarize neurons. In 

contrast, metabotropic receptors are coupled are coupled to guanosine triphosphate 

binding proteins (G proteins) and second messenger systems that modulate synaptic 

transmission (Dingledine et al., 1999). 

Ionotropic Glutamate Receptors 

The ionotropic glutamate receptors are post-synaptic, ligand-gated ion channels 

(Dingledine et al., 1999). Three types of ionotropic glutamate receptors have been 

categorized and named according to selective ability of N-methyl-D-aspartate (NMDA), 

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), or kainate (KA) to 

activate them (Dingledine et al., 1999). 

The AMPA receptor contributes to the early, fast component of the excitatory 

post-synaptic potential (EPSP). As a low affinity glutamate receptor, the AMPA receptor 
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is typically permeable to the monovalent cations, sodium ( ~ a ' )  and potassium (K'). 

However, AMPA receptors that lack a GluR2 subunit are also permeable to the divalent 

cation, ca2+ (Wisden and Seeburg, 1993). This ligand-gated channel demonstrates little 

voltage dependence, and currents are very brief (a few milliseconds) due to the low 

glutamate affinity and a high rate of desensitization (Boulter et al., 1990); Dingledine et 

al., 1999). 

KA receptors are very similar in function to AMPA receptors. Like AMPA 

receptors, KA receptors are voltage-independent, monovalent cation permeable channels 

with low affinity and fast kinetics (Michaelis, 1998). KA receptor-mediated EPSPs have 

smaller peak amplitudes and slower decay kinetics than those derived from AMPA 

receptors (Frerking and Nicoll, 2000). 

The NMDA receptor is quite different from the AMPA and KA subtypes of 

glutamate receptor. First, in addition to their permeability to ~ a +  and K', NMDA 

receptors have high permeability to ca2' (Dingledine et al., 1999). NMDA receptors also 

have slower kinetics attributed to a much higher affinity for glutamate (Conti and 

Weinberg, 1999). The conductance through NMDA receptors can last several hundred 

milliseconds and constitutes a slower, later phase of the EPSP (Conti and Weinberg, 

1999). 

Metabotropic Glutamate Receptors 

As previously mentioned, G-protein coupled metabotropic receptors are the other 

major category of glutamate receptors. There are eight types of metabotropic glutamate 
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receptors (mGluRs) that are further classified according to the second messenger systems 

to which they are linked (Conn and Pin, 1997). These receptors are found both on the 

pre-synaptic and post-synaptic membranes. Pre-synaptic mGluRs decrease 

neurotransmitter release, while mGluRs on the post-synaptic membrane regulate the 

function of ligand-gated ion channels including all three subtypes of ionotropic glutamate 

receptors (Anwyl, 1999). Thus, metabotropic glutamate receptors can act to modulate 

synaptic transmission in the CNS. 

Calcium ion homeostasis 

Calcium plays a fundamental role in the cell as a second messenger governing 

cellular functions such as differentiation and growth, membrane excitability, exocytosis, 

and synaptic activity. Neurons posess specialized homeostatic mechanisms to ensure 

tight conmmand of cytosolic ca2+ levels so that multiple independent ca2+-mediated 

signaling pathways can exist in the normal cell (Arundine and Tymianski, 2003). In 

excitotoxicity, excessive stimulation of glutamate receptors and an increase in 

extracellular glutamate concentration can lead to the disregulation of ca2+ homeostasis 

(Arundine and Tymianski, 2003). An overwhelming increase in free intracellular 

calcium concentration ([ca2+]i) can activate a self-destructive cellular cascade involving 

many calcium-dependent enzymes, such as phosphatases (eg, calcineurin), proteases (the 

calpains), and lipases. Lipid peroxidation can also cause production of free radicals 

which damage vital cellular proteins and lead to neuronal death (Choi, 1988; Michaels 

and Rothrnan, 1990; Tymianski and Tator, 1996; Delorenzo et al., 2005). 
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Intracellular calcium regulation 

Influx of extracellular ca2+ across the plasma membrane 

The neuronal plasma membrane is relatively impermeable to ca2+ with exclusion 

of three fundamental mechanisms of ca2+ entry: ligand-gated cation channels, voltage- 

gated ca2+ channels (VGCCs), and store-operated ca2+ channels (SOCs). The NMDA 

receptor, a ligand-gated cation channel, mediates the vast majority of ca2+ influx during 

excitatory neurotransmission (Ozawa, 1993). In addition, AMPA and KA receptors of 

certain subunit composition are permeable to ca2+(Jonas and Bumashev, 1995). 

Calcium extrusion across the plasma membrane 

Two transport systems exist to pump free intracellular ca2+ out of the neuron into 

the extracellular space. Because ca2+ extrusion acts against a large ca2+ concentration 

gradient, these systems are energy-dependent and are, therefore highly susceptible to 

ischemic injury (Tymianski and Tator, 1996). The ATP-driven ca2+ pump (ca2+ - 

ATPase) expends one molecule of ATP for each ca2+ ion extruded and is modulated by 

calmodulin, fatty acids, and protein kinases (Carafoli, 1992). The second transport 

system, the Na+-ca2+ exchanger, is indirectly coupled to ATP utilization in that it utilizes 

the Na+ concentration gradient maintained by the ATP driven Na+- K+ exchanger. This 

electrogenic exchange system is triggered by increases in [ca2+]i and extrudes one ca2+ 

for every two or three ~ a +  that enter the neuron (Tymianski and Tator, 1996). 
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Calcium buffering, secluestration, and storage 

Calcium buffering and sequestration can also reduce free intracellular ca2+ levels. 

The endoplasmic reticulum (ER) functions as a ca2+ store. The ER accumulates ca2+via 

the sarcoplasmic/endoplasmic reticulum ca2+ -ATPase (SERCA). This enzyme is similar 

to the c a 2 + - ~ ~ p a s e  of the plasma membrane in that it requires ATP. However, unlike 

the plasma membrane c a 2 ' - ~ ~ p a s e ,  SERCA function is independent of calmodulin and 

it moves two ca2+ ions into the ER for each ATP molecule utilized (Tymianski and Tator, 

1996). 

Due to their buffering properties, EF hand ca2'-binding proteins (CaBPs) can 

affect intracellular ca2+ homeostasis. They play an important role as calcium transporters 

and represent one of the most important calcium compartments in the brain (Krsek et al., 

2004). Calbindin D-28k, one of the major CaBPs, is present at high cytosolic 

concentrations in neurons such as purkinje cells and hippocampal granule cells. Together 

with its high cytosolic concentration, the ability of calbindin to bind up to four ca2+ ions 

at a time suggests that it plays an important role in ca2+ buffering (Mattson et al., 1995). 

The hippocampal fomiation is a locus of epileptic seizure activity (Lothman et al., 

1991). Recent research suggests 'that the absence of calcium buffer proteins results in 

marked abnormalities in cell firing (Bastianelli, 2003). The calcium-binding proteins are 

present mainly in GABAergic intemeurons, thus their disturbance could result in an 

alteration of inhibitory mechanisms (Krsek et al., 2004). Hippocampal neurons rich in 

the main ca2+-binding protein, calbindin D-28k, appear to be relatively resistant to 
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degeneration in a variety of acute and chronic disorders (Sloviter, 1989; Hauser and 

Annegers, 1991; Magloczky et al., 1997). 

Calbindin-like immunoreactivity is present in all dentate granule cells and some, 

but not all, CAI and CA2 pyramidal cells in rat hippocampi. In area dentata, calbindin 

immunoreactivity is normally present in a small number of interneurons of the molecular 

and granule cell layers and in a small population of presumed basket cells in or below the 

granule cell layer. Calbindin imrnunoreactivity has typically been found in interneurons 

of the strata radiatum and lacunosum-moleculare layers of the CAI field (Sloviter, 1989). 

Recent studies suggest that there is a loss of calbindin from granule cells of the dentate 

gyrus and select CAI neuron populations in mouse models (Kohr et al., 199 1 ; Gary et al., 

2000) and in rat kindling models of epilepsy (Kohr et al., 1991). Thus, the possible role 

of ca2+ as a second messenger mediating some of these changes in hippocampal CA 

neurons, dentate granule neurons, and interneurons is an important area of investigation. 

Central Hypothesis 

The rationale for this thesis comes from collaborations between our lab and others 

that have produced microarray studies showing a decrease in calbindin mRNA levels in 

rats six months and one year following pilocarpine-induced status epilepticus 

(DeLorenzo, Miles, in press). The central hypothesis to be tested in this thesis is that 

epileptogenesis causes long term plasticity changes in the expression of calbindin D-28k. 

Using the rat pilocarpine model of acquired epilepsy, this hypothesis will be tested by 

systematically addressing the following specific aims: 
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1. Deternine the effect of epileptogenesis on the distribution of calbindin using 

immunohistochemistry. 

2. Quantitate the effect of epileptogenesis on calbindin level using western blot analysis. 

3. Evaluate the time course of the change in expression of calbindin employing 

immunohistochemistry. 



www.manaraa.com

MATERIALS AND METHODS 

Pilocarpine-Induced Status Epilepticus 

Male Sprague-Dawleyrats weighing 200 to 250 g were used in accordance with 

university animal care and use protocols. Animals were housed in single cages on a 12- 

h112-h lightldark cycle (lights on at 7:00 AM) and were provided food and water ad 

libitum. Animals were made epileptic using a modified protocol of (Mello et al., 1993) 

that is well established in our laboratory (Rice and DeLorenzo, 1998). Before pilocarpine 

injections, animals were administered methylscopolamine nitrate (1 mglkg i.p.) to 

minimize peripheral, parasympathetic effects of pilocarpine treatment. Pilocarpine nitrate 

(375 mglkg i.p.) was then administered 30 min later. Onset of status epilepticus (SE) 

typically occurred within 20 to 40 min after pilocarpine injection and was determined 

when the animal displayed continuous moderate to severe behavioral seizures 

characterized by forelimb clonus, rearing, and falling. 

SE was defined as continuous seizure activity that lasted 30 min or longer or 

intermittent seizures without regaining consciousness between seizures that lasted 30 niin 

or longer. The severity of convulsions was evaluated, and only those animals that 

displayed behaviors consistent with ongoing SE were used in the study (Rice and 
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DeLorenzo, 1998). Seizure activity was terminated by consecutive diazepam injections 

(5 mglkg i.p., solubilizedin 10% ethanol, 45% propylene glycol, and 45% H20) at 1,3, 

and 5 h after the onset of SE. Animals continuing to display seizure activity beyond 6 h 

post onset of SE were euthanized. Control groups were composed of both naive and 

sham control animals that received methylscopolamine nitrate and diazepam injections 

only. Approximately 75% of the SE animals developed epilepsy under these conditions, 

and the mortality rate from SE was approximately 10%. SE animals that did not stop 

seizing with diazepam treatment were uncommon and represented less than 2% of the 

animals injected with pilocarpine. 

Epileptic Seizure Monitoring 

Seizures were monitored in freely moving animals via 24-hour video monitoring 

starting two weeks after pilocarpine treatment (Rice and DeLorenzo, 1998). Seiz~~res 

were then evaluated using established techniques (Rice and DeLorenzo, 1998) and 

confirmed by an observer blind to experimental treatment. Only seizures of grade 3 or 

greater on the Racine (1972) scale were scored (i.e. forelimb clonus + rearing + falling). 

The onset of spontaneous seizure occurrence was typically 4-6 weeks after drug injection. 

Tissue Preparation and Immunohistochemistry 

Five epileptic and five control rats from each time point (except the 6-month 

group where only 4 epileptic and 4 controls were available) were transcardially perhsed 

with isotonic saline, and brains were quick frozen and stored at -80°C in embedding 
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compound (Sakura Inc., Japan). Cryostat sections (10 pM) were prepared for 

immunostaining using established techniques (Scharfman et al., 2002; Krsek et al., 2004). 

Adjacent tissue sections were evaluated morphologically using Nissl stain in order to 

determine general histological characteristics. There is approximately only a 10% cell 

loss in the hippocampus associated with pilocarpine treatment. 

Adjacent tissue sections from each rat were processed for calbindin 

immunoreactivity. Briefly, sections were blocked in bovine serum for 1 h and then 

incubated with calbindin antiserum (Sigma-Aldrich, St. Louis, MO) at a 1 :5000 dilution 

for 48 hours at 4OC. Tissue slices were then washed in PBS (three washes, each for 5 

min), followed by biotinylated anti-mouse IgG (Vector Laboratories, Burlingame, CA) 

secondary antibody at 1 :200 dilution for 1 h at room temperature. After again washing in 

PBS for 15 min, calbindin immunoreactivity was visualized by exposure to avidin-biotin 

complex and 3-3'-diaminobenzidine (Vector Laboratories, Burlingame, CA). Stained 

tissue sections were evaluated using a binocular microscope (Olympus America Inc., 

Melville, NY) and were photographed using a digital camera (Olympus America Inc.). 

Images were analyzed using pixel values from Scion Image analysis s o h a r e  (Scion 

Corporation, Frederick, MD). 

Western Blot Protocol 

Gel electrophoresis was carried out onrat hippocampal homogenate and cytosolic 

preparations from epileptic animals 4 months after SE and age-matched, naive controls. 
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After monitoring of epileptic animals to verify seizure activity, the rats were sacrificed, 

and hippocanipal tissue was harvested on ice. Hippocampi were homogenized in 50 mM 

Tris, pH 7.5, 6 mM EGTA, 6mM EDTA, 320 rnM sucrose, 1 mM dithiothreitol, and 0.3 

mM phenylmethylsulfonyl fluoride. Samples were supplemented with the following 

protease inhibitors: aprotinin (10 pg/ml), PMSF (1 mmol/L) and leupeptin, (20 pg/ml) 

(Sigma-Aldrich, St. Louis, MO). Cytosolic fractions were isolated from neuronal 

membranes by centrifugation (Morris et al., 2000). Before electrophoresis, samples were 

thawed on ice and protein concentration per saniple was calculated using the Micro 

Bradford reagent system (Bio-Rad, Hercules, CA) quantified using a UV-2 10 1 PC 

ultraviolet spectrophotometer (Shimadzu, Kyoto, Japan). 

Samples were balanced to 8 pg proteinlgel lane and denatured in beta- 

mercaptoethanol and loading dye buffer. Samples were then heated to 90°C for 5 min in 

a programmable thermal controller PTC100 (MJ Research, Watertown, MA) and allowed 

to cool to room temperature before loading onto a 4-12% Bis-Tris-HC1 Ready Gel 

(Invitrogen Life Technologies, Carlsbad, CA). A colorimetric molecular mass marker 

including standards ranging from 10 to 182 kDa (Prosieve; Cambrex Bio Science 

Rockland, Inc., Rockland, ME) was loaded onto the last lane of the gel to aid in 

determining protein size. Gels were assembled into a Miniprotean I1 Electrophoresis 

System (Bio-Rad, Hercules, CA) and resolved for 90 min at 220 V constant in Tris buffer 

(Bio-Rad). After electrophoresis, gels were Westernblot transferred to Immobilon nylon 

membrane (Millipore Corp., Bedford, MA) overnight at 4OC using a Genie transfer 
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apparatus (IDEA Scientific, Minneapolis, MN) at a constant 15 V. Transfer buffer 

consisted of Tris-glycine buffer containing 10% methanol. After transfer, the Western 

blot was stored in phosphate-buffered saline at 4OC overnight; and gels were processed 

with a silver stain kit (Biorad) to assess correct protein loading (Figure 1). 

Immunostaining of the Western blot was performed by first blocking the 

membrane in buffer composed of 5% blotting grade blocker (Bio-Rad, Hercules, CA) and 

0.05% Tween 20 in phosphate-buffered saline for 45 min at room temperature. Mouse 

(polyclonal) anti-calbindin primary antibody (Sigma-Aldrich, St. Louis, MO) was added 

to the blocking solution at a dilution of 1 :3000, and the membrane was incubated for 90 

min at room temperature. After primary antibody incubation, the membrane was washed 

for a total of 25 min (five times for 5 min each) in phosphate-buffered saline with Tween 

(PBS-T). The membrane was then reblocked in fresh blocking buffer for 30 min. Anti- 

mouse IgG-horseradishperoxidase-conjugated secondary antibody (Santa Cruz 

Biotechnology, Inc., Santa Cmz, CA) was then added to the blocking solution in a 1: 1000 

dilution, and the membrane was incubated for a final 45 minutes. Western blots were 

washed (five times for 5 min each) in PBS-T and incubated for 5 min in Supersignal 

(Pierce Chemical, Rockford, IL) for enhanced chemiluminescent analysis. 

Chemiluminescent images were visualized using Kodak X-Omat Blue XB-1 X-ray film 

(Eastman Kodak, Rochester, NY) and developed using a Kodak M35AX-Omat Processor 

(Eastman Kodak). Film images were digitized using a gel scanner and analyzed by 

computer-assisted densitometry (Amersham Biosciences Inc., Piscataway, NJ). 
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Membranes were stripped and re-blotted with anti-l3-actin antibody (Sigma-Aldnch, St. 

Louis, MO) (1 5000 in PBS) as a second means to assess correct protein loading. Using 

the molecular mass marker as reference, the only visible protein band was determined to 

correspond to a mass of 28 kDa. 

Statistical Analyses 

Results are given as means f standard error of the mean (SEM). Statistical 

comparisons were made using Sigmastat (SPSS Science, Chicago, IL). The student's t- 

test was utilized to compare control and pilocarpine-treated groups. Graphs were 

generated using Origin 6.1 software (Microcal Software, Inc., Northampton, MA). 
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Figure 1. Gels were processed with Silver Stain Plus kit (Biorad) immediately following 
the transfer step to assess correct protein loading. 
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RESULTS 

This study is based on 68 animals that had been either treated with pilocarpine 

and subsequently had status epilepticus (SE) (n = 34) or age-matched naive controls (n = 

34). Of the 34 pilocarpine-treated rats, animals were perfused at varying times after 

pilocarpine-induced status epilepticus (4 days, 1 week, 2 weeks, 1 month, 4 months and 6 

months post-SE). The pilocarpine-treated animals in the 1 month, 4 month, and 6 month 

post-SE groups all had been observed having recurrent, spontaneous motor seizures after 

SE. Motor seizures were noticed as early as two weeks after pilocarpine treatment and 

continued for months until animals were sacrificed. Animals had at least one seizure 

when observed during at least two separate 24-hour video monitoring periods, and 

manifested an average of 3.0 seizures per 24-hour period. Control rats never exhibited 

behavioral seizures. They were perhsed at the same time points as age-matched post-SE 

epileptic animals. 

Immunohistochemistry 

To evaluate the anatomical distribution of the decrease in calbindin expression in 

epileptic brains, we conducted immunohistochemical staining of calbindin protein on 

coronal hippocampal sections using established techniques (Wittner et al., 2002; 

Dinocourt et al., 2003; Krsek et al., 2004). In addition to measuring right and left whole 

2 1 
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hippocampi, pixel values from a non-brain region of the slide were measured. In an 

effort to minimize the influence of any background staining, background values were 

subtracted before averaging the right and left hippocampi together. Epileptics were 

compared with naive controls using Scion Image computer software. All measurements 

were in the linear range between 0 (lightest) and 250 (darkest). 

Animals that experienced SE that were sacrificed four days (n = 10) and 1-week 

(n = 10) after pilocarpine showed calbindin staining patterns that were indistinguishable 

from naive controls in most instances. Pixel value means and standard errors were 43.7 f 

3.3 and 48.3 f 6.4 for naive and SE rats, respectively, in the 4-day post-SE group as 

shown in Figure 2. For animals in the 1 -week group, these values were 9.9 f 4.2 and 9.4 

+ 3.2 for naives and post-SE animals (Figure 3). 

Two weeks post-pilocarpine treatment there also did not appear to be a significant 

overall decrease in calbindin immunoreactivity (IR). Control animals (n = 5) had a mean 

pixel value of 22.7 f 2.7, while epileptic rats (n = 5) had a mean of 17.9 f 2.8 (Figure 4). 

Interestingly, slides from two of the five rats that had experienced status in the two-week 

group had noticibly less calbindin present than naive animals indicating that they were 

sacrificed as changes and possible synaptic reorganization were occurring. 

In control animals of all groups, calbindin irnrnunoreactive neurons predominated 

in stratum pyramidale of the hippocampus, and in stratum granulosum and hilus of the 

dentate gyrus. Average pixel value analysis of 1 month, 4 month, and 6 month post-SE 
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epileptic animals showed a significant overall decrease in calbindin immunoreactivity (p 

< 0.05) using the student's t-test for statistical analysis (Figures 5, 6, and 7). A significant 

decline in the number of calbindin immunoreactive neurons was demonstrated in the CA3 

region (Figure 8), and in both blades of the dentate gyms (Figures 9 and 10) in 

pilocarpine-treated rats sacrificed at one month, four months, and six months post-SE. A 

majority of epileptic animals also showed a loss of calbindin in the CAI dendritic field 

(Fig. 11). These differences were especially striking when compared to data from the 4- 

day post-SE animals. 

Western blot analysis 

Using Western blot analysis, we compared naive control with epileptic 

hippocampal cytosolic fractions (supernatant) and membrane fractions (P2 pellets). The 

data show a significant decrease in average optical densities in the five epileptic lanes 

when compared to control loaded with 8 pg of protein from the cytosolic fraction, the 

compartment of the cell where calbindin is found (Figure 12B) . Samples consisted of 

five naive and five epileptic animals sacrificed 4 months post-SE as described previously 

using anti-calbindin primary antibody at a dilution of 1 :3000 (Sigma-Aldnch, St. Louis, 

MO) and goat anti-mouse IgG HRP secondary antibody (Santa Cruz Biotechiology, Inc., 

Santa Cruz, CA) at a dilution of 1 : 1000. Quantification of the bands shown in Figure 

11A revealed that expression of this protein was decreased 63% in the cytosolic fraction 

of hippocampi from epileptic rats (n = 5) compared with naive control animals (n = 5; p < 
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0.006, student's t-test), suggesting that a long-term plasticity change in the expression of 

calbindin occurs with epilepsy. AAer correcting calbindin protein levels to internal 

protein standards in a silver stain, we still observed a significant decrease in the calbindin 

expression in epileptic animals. 
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Figure 2. Calbindin expression was not significantly decreased in pilocarpine-treated 
rats sacrificed four days after status epilepticus (SE). A: Mean pixel value for the 
control group 43.7 f 3.3 (n = 5). Pilocarpine treated rats (n = 5) had a mean pixel value 
of 48.3 + 6.4. B: Representative control and pilocarpine-treated hippocampi of animals 
sacrificed four days post pilocarpine treatment. In this and all other figures, images were 
acquired with an Olympus DP 10 digital camera and photos were assembled using Adobe 
Photoshop (version 5.0); images were digitally sharpened, contrast was changed, and 
color was adjusted to reflect the original tissue specimens. (Data are reported as mean f 
SEM.) 
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Figure 3. Calbindin expression was not significantly decreased in pilocarpine-treated 
rats sacrificed one week after status epilepticus (SE). A: Mean pixel value for the 
control group was 9.9 f 2.1 (n = 5). Pilocarpine treated rats (n = 5) had mean pixel value 
of 9.4 f 3.2. B: Representative control and pilocarpine-treated hippocampi of animals 
sacrificed one week post pilocarpine treatment are shown. 
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Figure 4. Two weeks after pilocarpine treatment, there was not a significant overall 
decrease in calbindin protein levels. A: Mean pixel value for control group was 22.7 f 
2.7 (n = 5). Pilocarpine treated rats (n = 5) had mean pixel value of 17.9 + 2.8. B: 
Representative control and pilocarpine-treated hippocampi of animals sacrificed two 
weeks post pilocarpine treatment. 
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Figure 5. Calbindin expression is significantly decreased one month after status 
epilepticus (*, p < 0.05, student's t-test). A. Mean pixel value for control group was 43.9 
f 4.3 (n = 5). Pilocarpine treated rats (n = 5) had mean pixel value of 26.9 f 4.3. B. 
Representative control and pilocarpine-treated hippocampi of animals sacrificed one 
month post pilocarpine treatment. 
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Figure 6. Four months after status epilepticus, calbindin protein levels remain 
significantly decreased (p < 0.05, student's t-test). A. Mean pixel value for control 
group was 49.7 f 3.5 (n = 5). Pilocarpine treated rats (n = 5) had mean pixel value of 
35.1 + 2.4. B. Representative control and pilocarpine-treated hippocampi of animals 
sacrificed f o ~ u  months post pilocarpine treatment. 
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Figure 7. Six months post pilocarpine treatment, overall calbindin protein levels remain 
significantly decreased (p < 0.05, student's t-test). A. Mean pixel value for control 
group was 27.2 + 4.3 (n = 4). Pilocarpine treated rats (n = 4) had a mean pixel value of 
12.1 + 2.4. B. One representative control and epileptic hippocampi of animals sacrificed 
six months post status epilepticus are shown. 
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Figure 8. Immunohistochemical analysis of control and pilocarpine treated rats reveals 
no significant decrease in calbindin in CA3 dendritic field in animals that were sacrificed 
four days post treatment (A). In contrast, epileptic rats show a significant loss of 
calbindin protein in the CA3 field at the one month post-SE time point (B) as well as at 
the six month post-SE time point (C). 
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Figure 9. Calbindin expression in the granule cell layer of the dentate gyrus in the 
hippocampi of nayve rats (A) is similar to pilocarpine treated animals (B) at 4 days post- 
SE. Higher magnification photos of the dentate gyrus of control (C) and epileptic (D) 
animals reveal almost identical calbindin staining patterns. 
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Figure 10. The dentate gyrus of control rat (A) exhibits greater calbindin 
imrnunoreactivity than an epileptic rat six months post-SE (B). Higher magnification 
photos reveal the significant loss of calbindin in the blades of the dentate gyrus in 
epileptic rats (D) when compared to naive controls (C). 
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Figure 11. High magnification (200 x) photographs show a loss of calbindin-positive 
neurons in the CAI dendritic field in epileptic rats (B) when compared to naive controls 
(A). o = stratum oriens; p = stratum pyramidale; r = stratum radiatum. 
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Figure 12. Quantification of western blots revealed a significant decrease in calbindin 
levels in the supernatant (cytosolic fraction) of epileptic hippocampi. A. A blot with 
four representative lanes, two control (C) and two epileptic (E) samples. B. Mean 
optical densities of all ten lanes averaged together is significantly less in epileptic tissue 
when compared to naive animals (*, p < 0.006, student's t-test). 
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DISCUSSION 

Rationale and Summary of the Central Hypothesis 

The calcium-binding protein, calbindin, plays an in~portant role as a calcium 

transporter and as a buffering system for intracellular calcium ions, and represents one of 

the most important calcium compartments in the brain (Newman et al., 2002). Neuronal 

calbindin mRNA decreases don't necessarily correspond to a lower amount of protein 

translation. Because of the possibility of post-transcriptional modifications that can occur 

and the number of steps involved in translation of mRNA into protein, decreased mRNA 

levels do not always lead to a decrease in protein synthesis. Microarray studies suggest a 

decrease in calbindin mRNA levels as long as one year post-pilocarpine treatment. This 

thesis study found decreases in calbindin in epilepsy and looked at protein levels to 

determine when changes in expression were occurring. Previous studies have reported 

the vulnerability of calbindin-positive neurons in the dentate granule cell layer of the 

hippocampus in epilepsy (Scharfinan et al., 2002; Krsek et al., 2004). The present 

findings confirm these observations and further demonstrate that this loss in protein 

corresponds to a decrease in calbindin mRNA expression. 

Protein Synthesis 

Protein synthesis requires highly specific molecular signals and occurs in three 
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carefully orchestrated phases--initiation, elongation, and termination. Messenger RNA 

(mRNA) carries the genetic information copied from DNA in the form of a series of 

three-base code "words," each of which specifies a particular amino acid. Protein 

synthesis is a multi-step process where amino acids are added one at a time. Each 

polypeptide chain has a specific starting point, and growth proceeds in one direction to a 

fixed terminus. Often, the primary synthetic product is then modified. Translation is the 

whole process by which the base sequence of an mRNA is used to order and to join the 

amino acids in a protein. The three types of RNA (mRNA, transfer RNA, and ribosomal 

RNA) participate in this essential protein-synthesizing pathway in all cells (Lodish et al., 

2000). 

Calcium as a Major Signaling Molecule 

Calcium is a major signaling molecule in neurons; therefore, neuronal free [ca2+]i 

is highly regulated. Normal neuronal [ca2+]i is maintained around 100 nM (Mody et al., 

1995). This concentration is less than one ten-thousandth of the fiee extracellular ca2+ 

concentration (Putney and McKay, 1999). Calcium plays a pivotal role in normal 

neuronal function (Berridge, 1998; DeCoster et al., 1992; Tymianski and Tator, 1996). 

Calcium signaling in neurons is involved in processes as diverse as cell growth and 

differentiation (Spitzer, 1994), synaptic activity (Brose et al., 1992; Llinas et al., 1992), 

maintenance of the cytoskeleton (Trifaro and Vitale, 1993), and gene expression 

(Carafoli et al., 1997). Brief, controlled elevations in ca2+ occur during physiological 
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processes such as neurotransmitter release and the plasticity changes of long-term 

potentiation in learning and memory (Malenka and Nicoll, 1999; Gnegy, 2000; West et 

al., 2001; Tzounopoulos and Stackman, 2003; Delorenzo et al., 2005). 

The Calcium Hypothesis of Epileptogenesis 

It is important to emphasize that epileptogenesis is a complex process, and there 

may be many other second messenger systems interacting with ca2+ or acting 

independently in producing and maintaining AE. However, the evidence for the role of 

ca2+ in this process and the close relationship between this second messenger to injury 

make it a likely important regulator of epileptogenesis. 

A major theory in developing the role of ca2+ in the development of AE is that 

there is a continuum of severity in the effects of ca2+ on neuronal tissue. Olney (1969) 

initially developed this concept in the discovery of excitotoxicity. Small changes in ca2+ 

levels produced by glutamate receptor stimulation results in activities related to synaptic 

transmission and normal physiological activity. However, excessive activation of the 

glutamate receptors can actually excite the neuron to death, leading to the term, 

excitotoxicity. In between normal physiologic fuictions and cell death, there are other 

effects of prolonged activation of glutamate receptors, especially the NMDA receptors. 

Prolonged or increased activation of glutamate receptors have been implicated in the 

neuronal plasticity changes of memory and long-term potentiation (Davies et al., 2002; 

Lynch, 2004). 
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The development of AE is one of the most dramatic examples of long-term 

plasticity changes in neurons. Following an initial neuronal injury, permanent plasticity 

changes develop, which lead to the induction and maintenance of AE. Since dead 

neurons do not seize, it is reasonable to assume that the injury phase of AE produces 

prolonged activation of glutamate receptors that exceed the effects developed in normal 

physiological function and memory, yet stop short of producing excitotoxicity and cell 

death. Thus, the severity of glutamate stimulation and its duration are essential in the 

development of AE (DeLorenzo et al., 2005). 

Overwhelming, irreversible elevations in [ca2+]i, as observed in glutamate 

excitotoxicity, have been implicated in mechanisms of delayed neuronal death secondary 

to SE and other conditions such as stroke and traumatic brain injuries (TBIs) (Golding et 

al., 1999; Gopinath et al., 2000; Lenzlinger et al., 2001). The ca2+ hypothesis of 

epileptogenesis postulates that the pathophysiological effects of ca2+ on neuronal 

function may lie on a continuum with one extreme characterized by brief, controlled ca2+ 

loads of normal function, another extreme characterized by irreversible ca2+ loads and 

neuronal death, and a middle ground that is characterized by sublethal, prolonged, but 

reversible, elevations in [ca2+]i that trigger pathological plasticity changes, leading to the 

development of epilepsy and the persistent elevations in [ca2+]i that play a role in 

maintaining chronic epilepsy (Delorenzo et al., 2005). In other words, both excitotoxicity 

and epileptogenesis require NMDA receptor activation and the presence of extracellular 
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ca2+ during initiation. With both excitotoxicity and and epileptogenesis neurons endure 

large elevations of [ca2+li. In excitotoxicity, these elevations progress to an irreversible 

loss of ca2+ homeostasis and neuronal death. In epileptogenesis, though, these 

elevations, though prolonged, are buffered over time and lead to pernlanent plasticity 

changes and neuronal hyperexcitability. 

The findings presented in this thesis study demonstrate that a significant change in 

calbindin expression occurs with the epileptic phenotype. The data suggest that calbindin 

levels in the hippocampus, specifically in the dentate granule cells, CA3 region, and CAI 

dendritic field, decrease significantly between 2 weeks and 1 month after CNS 

insultlinjury, during the time that corresponds to the latency phase of epileptogenesis. 

Preliminary irnrnunohistochemical analysis of specific regions was performed. Results 

indicated no significant differences between controls and epileptics in the 4 day post-SE 

group when comparing dentate granule cells, CAI, and CA3 regions. However, one 

month post-SE, epileptic animals had even more significantly decreased calbindin protein 

immunoreactivity (p < 0.005) in the molecular layer of the dentate gyrus and in the CA3 

region than controls when compared to pixel values for whole hippocampus. 

Because calcium-binding proteins are present mainly in GABAergic interneurons, 

their disturbance could therefore refer to an alteration of inhibitory mechanisms (Krsek et 

al., 2004). This type of alteration has been observed in the dentate gyrus of rats 

previously exposed to pilocarpine-induced SE. Dentate granule cells demonstrated 
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prolonged EPSPs and discharged more action potentials in comparison with controls. In 

addition, IPSP conductances as well as frequency of GABA-A spontaneous and miniature 

IPSCs were decreased, thus confirming a loss of inhibition of granule cells (Kobayashi 

and Buckmaster, 2003; Krsek et al., 2004). According to microarray studies, calbindin 

mRNA is still decreased in epileptic rats six months and even one year after pilocarpine 

treatment, indicating that this change in calbindin expression is prolonged and probably 

permanent. 

Conclusions 

The major finding of this thesis was that calbindin expression significantly 

decreases between two weeks and one month after status epilepticus in the rat pilocarpine 

model of epilepsy. The decreased calbindin expression displayed in the hippocampi of 

epileptic animals was regionally specific, occurring primarily in the dentate gyrus, CA3 

dendritic field, and in some animals, in the CAI field. This decrease in calbindin 

expression was seen up to six months after the induction of epilepsy and thus 

demonstrates a long-lasting or permanent plasticity change in the brain that may play a 

role in .the pathophysiology of epilepsy. The observation that morphological changes 

occur over the course of two to four weeks after initial insult suggests that interventions 

during this time period or sooner could possibly be beneficial. Although it is unlikely 

that restoring calcium homeostatic mechanisms to normal in epileptic brain tissue will 

completely reverse all of the complex changes associated with AE, it is possible that it 
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may restore enough normal physiological function to the epileptic neuron to decrease or 

even terminate seizure discharge. A better understanding of the mechanisms that 

underlie the pathophysiological changes occurring after a debilitating, but not lethal, CNS 

insult will aid in the elucidation of the pathogenesis of epilepsy. 
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